Ion transport and membrane potential in CNS myelinated axons I. Normoxic conditions.
نویسندگان
چکیده
Compound resting membrane potential was recorded by the grease gap technique during normoxic conditions (37 degrees C) in rat optic nerve, a representative CNS myelinated tract. Mean potential was -47 +/- 3 (SD) mV and remained stable for 2-3 h. Input impedance of a single optic nerve axon was calculated to be approximately 5 Gomega. Contribution of the Na+ pump to resting axonal potential is estimated at -7 mV. Ouabain (10 microM to 10 mM) evoked a dose-dependent depolarization that was maximal at >/=1 mM, depolarizing the nerves to approximately 35-40% of control after 60 min. Inhibiting energy metabolism (CN- and iodoacetate) during high-dose ouabain (1-10 mM) exposure caused an additional depolarization, suggesting additional ATP-dependent, ouabain-insensitive ion transport systems. Perfusion with zero-Na+ (choline substituted) caused a transient hyperpolarization, that was greater than with tetrodotoxin (TTX; 1 microM) alone, indicating both TTX-sensitive and -insensitive Na+ influx pathways in resting rat optic nerve axons. Resting probability (P)K:PNa is calculated at 20:1. In contrast to choline-substituted solution, Li+-substituted zero-Na+ perfusate caused a rapid depolarization due to Na+ pump inhibition and the ability of Li+ to permeate the Na+ channel. TTX reduced, but did not prevent, ouabain- or zero-Na+/Li+-induced depolarization. We conclude that the primary Na+ influx path in resting rat optic nerve axons is the TTX-sensitive Na+ channel, with evidence for additional TTX-insensitive routes permeable to Na+ and Li+. In addition, maintenance of membrane potential is critically dependent on continuous Na+ pump activity due to the relatively high exchange of Na+ (via the above mentioned routes) and K+ across the membrane of resting optic axons.
منابع مشابه
Study the Transport Properties of Anion and Cation Exchange Membranes toward Various Ions Using Chronopotentiometry
The transport properties of various anion and cation exchange membranes were studied in different electrolyte solutions using chronopotentiometry technique to get insight about the influence of the counter ion on the transport properties of the membranes. The investigated samples include heterogeneous ion exchange membranes varying in the functionality of fixed charged gro...
متن کاملPolysulfone-based Anion Exchange Membranes for Potential Application in Solid Alkaline Fuel Cells
In present research work, anion exchange membranes based on quaternized polysulfone with ammonium cation moieties (QAPSF) were prepared by chloromethylation, amination and alkalization. The chloromethylated polysulfone were characterized by 1HNMR spectroscopy and functionalization degree was determined according to peak area integration. Ion transport properties (ionic conductivity, ion exchang...
متن کاملTHE CARRIER FACILITATED TRANSPORT OF THE LITHIUM IONS BY A SERIES OF NON-CYCLIC SYNTHETIC IONOPHORES
The carrier facilitated transport of lithium picrate was studied using a series of non-cyclic polyethers containing different end groups and chain lengths through Bulk Liquid Membrane (BLM) and Supported Liquid Membrane (SLM) systems. The various membrane supports used are viz. PTFE, cellulose nitrate, and dialysis membrane and onion membrane. The amount of Li+ transported depends upon the stru...
متن کاملPolarized Domains of Myelinated Axons
The entire length of myelinated axons is organized into a series of polarized domains that center around nodes of Ranvier. These domains, which are crucial for normal saltatory conduction, consist of distinct multiprotein complexes of cell adhesion molecules, ion channels, and scaffolding molecules; they also differ in their diameter, organelle content, and rates of axonal transport. Juxtacrine...
متن کاملPressure wave model for action potential propagation in excitable cells
Speed of propagation of small-amplitude pressure waves through the cytoplasmic interior of myelinated and unmyelinated axons of different diameters is theoretically estimated and is found to generally agree with the action potential (AP) conduction velocities. This remarkable coincidence allows to surmise a model in which AP spread along axon is propelled not by straggling ionic currents as in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 78 4 شماره
صفحات -
تاریخ انتشار 1997